M. Knudsen, The Molecular Heat Conduction of Gases and Accommodation Coefficients, Ann. Phys., 1911, 4 (4), 593-656. | |
E.H. Kennard, The Kinetic Theory of Gases: With an Introduction to Statistical Mechanics, McGraw-Hill Publishing Co. Ltd., London, 1934, 315-318. | |
ASTM D5334-08, Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, Annual Book of ASTM Standards 4.08, West Conshohocken (PA), 2008. | |
ASTM C1113/1113M-09, Standard Test Method for thermal conductivity of refractories by hot wire (Platinum Resistance Thermometer Technique), Annual Book of ASTM Standards 15.01, West Conshohocken (PA), 2009. | |
ASTM C177-10, Standard Test Method for Steady-State Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus, Annual Book of ASTM Standards 4.06, West Conshohocken (PA), 2010. | |
L.B. Loeb, The Kinetic Theory of Gases (Book Review), McGraw-Hill Book Company Inc., New-York, 1927, 283-295. | |
J.H. Jeans, An Introduction to the Kinetic Theory of Gases, Cambridge University Press, London, 1940, 190-194. | |
Kaganer M. G., Thermal Insulation in Cryogenic Engineering, Israel Program for Scientific Translations Ltd, Jerusalem, 1969, 152-166. | |
Kunii D. and Smith J.M., Thermal Conductivity of Porous Rocks Filled with Stagnant Fluid, Soc. Petrol. Eng. J., 1960, 1 (1), 37-42. CrossRef | |
Swift D.L., The Thermal Conductivity of Spherical Metal Powders Including the Effect of an Oxide Coating, Int. J. Heat Mass Tran., 1966, 9 (10), 1061-1074. CrossRef | |
Godbee H.W. and Ziegler W. T., Thermal Conductivities of MgO, Al2O3, and ZrO2 Powders to 850° C. I. Experimental, J. Appl. Phys., 1966, 37 (1), 40-55. | |
Luikov A.V., Shashkov A. G., Vasiliev L. L. and Fraiman Yu. E., Thermal Conductivity of Porous Systems, Int. J. Heat Mass Tran., 1966, 11 (2), 117-140. CrossRef | |
McCoy B.J. and Cha C. Y., Transport Phenomena in the Rarefied Gas Transition Regime, Chem. Eng. Sci., 1974, 29 (2), 381-388. CrossRef | |
Elsari M. and Hughes R., Axial Effective Thermal Conductivities of Packed Beds, Appl. Therm. Eng., 1980, 22 (18) 1969-1980. CrossRef | |
Shonnard D.R. and Whitaker S., The Effective Thermal Conductivity for a Point-Contact Porous Medium: an Experimental Study, Int. J. Heat Mass Tran., 1989, 32 (3), 503-512. CrossRef | |
Hall R.O.A., Martin D.G. and Mortimer M.J., The Thermal Conductivity of UO2 Sphere-Packed Beds, J. Nucl. Mater., 1990, 173 (2),130-141. CrossRef | |
Caps R., Heinemann U. and Fricke J., Thermal Conductivity of Polyimide Foams, Int. J. Heat Mass Tran., 1997, 40 (2), 269-280. CrossRef | |
Muller S.G., Fricke J., Hofmann D., Horn R., Nilsson O. and Rexer B., Experimental and Theoretical Analysis of the Thermal Conductivity of SiC Powder as Source Material for SiC Bulk Growth, Mater. Sci. Forum, 2000, 338-342, 43-46. | |
Caps R. and Fricke J., Thermal Conductivity of Opacified Powder Filler Materials for Vacuum Insulations, Int. J. Thermophys., 2000, 21 (2), 445-452. CrossRef | |
Slavin A.J., Londry F. A. and Harrison J., A New Model for the Effective Thermal Conductivity of Packed Beds of Solid Spheroids: Alumina in Helium between 100 and 500°C, Int. J. Heat Mass Tran., 2000, 43 (12), 2059-2073. CrossRef | |
Reim M., Korner W., Manara J., Korder S., Arduini-Schuster M., Ebert H. P. and J. Fricke, Silica Aerogel Granulate Material for Thermal Insulation and Daylighting, Sol. Energy, 2005, 79, 131-139. CrossRef | |
Gopalarathnam C.D., Hoelscher H.E. and Laddha G.S., Effective Thermal Conductivity in Packed Beds, ALChE J., 1961, 7 (2), 249-253. CrossRef | |
Argento C. and Bouvard D., Modeling the Effective Thermal Conductivity of Random Packing of Spheres through Densification, Int. J. Heat Mass Tran., 1996, 39 (7), 1343-1350. CrossRef | |
Hayashi S., Kubota K., Masaki H., Shibata Y. and Takahashi K., A theoretical Model for the Estimation of the effective Thermal Conductivity of Packed Bed of Fine Particles, Chem. Eng. J., 1987, 35 (1), 51-60. CrossRef | |
Pons M. and Dantzer P., Effective Thermal Conductivity in Hydride Packed Beds I. Study of Basic Mechanisms with help of the Bauer Schlunder Model, J. Less-Common Met., 1991, 172-174, 1147-1156. | |
Starck C. and Fricke J., Improved Heat-Transfer Models for Fibrous Insulations, Int. J. Heat Mass Tran., 1993, 36 (3), 617-625. CrossRef | |
Lund K.O., Nguyen H., Lord S.M. and Thompson S., Numerical Correlation for Thermal Conduction in Packed Beds, Can. J. Chem. Eng., 1999, 77 (4), 769-774. CrossRef | |
Siu W.W.M. and Lee S.H.K., Effective Conductivity Computation of a Packed Bed using Constriction Resistance and Contact Angle Effects, Int. J. Heat Mass Tran., 2000, 43 (21), 3917-3924. CrossRef | |
Bahrami M., Yovanovich M.M. and Culham J.R., Effective Thermal Conductivity of Rough Spherical Packed Beds, Int. J. Heat Mass Tran., 2006, 49 (19-20), 3691-3701. CrossRef | |
Spagnol S., Lartigue B., Trombe A. and Gibiat V., Modeling of Thermal Conduction in Granular Silica Aerogels, J. Sol-Gel Sci. Techn., 2008, 48 (1-2), 40-46. CrossRef | |
Bhatt H., Donaldson K.Y. and Hasselman D.P.H., Role of Interfacial Carbon Layer in the Thermal Diffusivity/Conductivity of Silicon Carbide Fiber-Reinforced Reaction Bonded Silicon Nitride Matrix Composites, J. Am. Ceram. Soc., 1992, 75(2), 334-340. CrossRef |
Temperature dependence of free-molecular gaseous heat flow in unsealed system open to surrounding ambient
Abhijit PandhariRelated information
1 UBC Materials Engineering, Frank Forward Building, 309-6350 Stores Road, Vancouver, BC, V6T1Z4, Canada
, Didericus HasselmanRelated information1 UBC Materials Engineering, Frank Forward Building, 309-6350 Stores Road, Vancouver, BC, V6T1Z4, Canada