Access provided by Rice University


Foster, C. and Cowles, F., “Experimental Study of Gas Flow Separation in Overexpanded Exhaust Nozzles for Rocket Motors”, JPL Progress Report 4-103, May 1949.
Summerfield, M., Foster, C., and Swan, W., “Flow separation in overexpanded supersonic exhaust nozzles. Jet Propulsion, 24(9), 319-321(1954)
Arens and Spiegler, “Shock Induced Boundary-Layer Separation in Overexpanded Conical Exhaust Nozzles”, AIAA Journal, Vol.1, No.3, March 1963, pp. 578-581.
CrossRef
Schmucker, R., “Flow Processes in Overexpanding Nozzles of Chemical Rocket Engines”, (in German), Report TB-7,-10,-14, Technical University Munich.
Lawerence, R.A. and Weynand, E.E., “Factors Affecting Flow Separation in Contoured Supersonic Nozzles”, AIAA Journal, Vol.6, No.6, 1968, pp.1159-1160
CrossRef
Sutton, George, P. and Biblarz, O., Rocket Propulsion Elements, Seventh Edition, John Wiley & Sons, Inc
Dumnov, D., “Unsteady side-load acting on the nozzle with developed separation zone”, AIAA 96-3220
Nave, L.H. and Coffey, G.A., “Sea level side-loads in high area-ratio rocket engines”, AIAA Paper 73-1284
Oestlund, J., Damgaard, T. and Frey, M., “Side-load phenomena in highly overexpanded rocket nozzles”, Journal of Propulsion and Power, 20 (4), 695-704 (2004)
CrossRef
Terhardt, M., Hagemann, G. and Frey, M., “Flow separation and side-load behavior in the Vulcain engine”, AIAA 99-2762.
Frey, M. and Hagemann,G., “Flow separation and side-loads in rocket nozzles”, AIAA-99-2815
Frey, M. and Hagemann, G, “Restricted shock separation in rocket nozzles”, Journal of Propulsion and Power, 16(3), 478-484 (2000)
CrossRef
Hagemann, G., Frey, M. and Koeschel, W., Appearance of restricted shock separation in rocket nozzles”, Journal of Propulsion and Power, 18 (3), 577-584 (2002)
CrossRef
Onofri M., and Nasuti, F., “The physical origins of side-loads in rocket nozzles”, AIAA 99-2587.
Nasuti, F. and Onofri, M., “Viscous and Insicid Vortex generation During Start up of Rocket Nozzles”, AIAA Journal, 1998, Vol 36, No.5, pp 809-815.
CrossRef
Frey, M., Stark, R., Ciezki, H.K., Quessard, F., and Kwan, W., “Subscale nozzle testing at the P6.2 test stand”, AIAA 2000-3777
Watanabe, Y., Sakazume, N., and Tsuboi, M.: LE-7A Engine nozzle problems during the transient operations. AIAA 2002-3841
Watanabe, Y., Sakazume, N., and Tsuboi, M.: LE-7A engine separation phenomenon differences of the two nozzle configurations. AIAA 2003-4763.
Nguyen, A.T, Deniau, H., Girard, S. and Alizary de Roquefort, T: Wall Pressure Fluctuations in an Overexpanded Rocket Nozzle. AIAA 2002-4001
Verma, S.B., Stark, R. and Haidn, O., “Relation between shock unsteadiness and the origin of side-loads in a thrust optimized parabolic rocket nozzle. The Aerospace Science and Technology Journal, 10(6), August 2006
Verma, S.B. and Haidn, O., “Surface Flow Studies of Restricted Shock Separation in a Thrust Optimized Parabolic Nozzle”, Journal of Shock Waves, Detonations and Explosions, DOI 10.1007/s00193-009-0211-0
Verma, S.B., “Shock Unsteadiness in a Thrust Optimized Parabolic Nozzle”, Journal of Shock Waves, Detonations and Explosions, Special issue on Nozzle Flow Separation, Volume 19, Issue 3 (2009), Page 193
Verma, S.B., “Study of Flow Separation in a Truncated Ideal Contour (TIC) Nozzle”, AIAA Journal of Propulsion and Power, September-October, Vol. 18, No. 5, 2002, pp. 1112-1121.
CrossRef
Frey, M. and Hagemann, G.: Status of Flow Separation Prediction in Rocket Nozzles. AIAA Paper No-98-3619
Courant, R. and Freidrichs, K.O.(1948), Hypersonic Flow and Shock Waves, Wiley Interscience, New York.
Ben Dor, G., Igra, O. and Elperin, T., Handbook of Shock Waves, Vol. 2 Shock Wave Interactions and Propagation, Academic Press, 2001.
Henderson, L.F. and Lozzi, A., “Experiments on Transition of Mach Reflections”, Journal of Fluid Mechanics, 1975, Vol. 94, pp. 541-559.
CrossRef
Frey, M. “Shock Patterns in the Exhaust Plume of Rocket Nozzles”, Proceedings of the 3rd European Symposium on Aerothermodynamics of Space Vehicles, pages 395-403, ESAESTEC, Noordwijk, The Netherlands, 1998.
Stark, R. and Wagner, B., “Experimental study of boundary layer separation in truncated ideal contour nozzles”, Journal of Shock Waves, 2009, Vol. 19, Issue 3, pp 185-191
CrossRef
Verma, S.B. and Haidn, O., “Studies on Restricted Shock Separation in a Thrust Optimized Parabolic Nozzle,” AIAA Journal of Propulsion and Power, 2009, Vol. , No., pp. 17
Okada, Y., Sunouchi, K., Ryu, H., Patra, A., Ashmine, K. And Takeuchi, K, “Measurement of Condensation Onset in Steady Supersonic Laval Nozzle Flow for the Molecular Laser Isotope Separation Process”, Journal of Nuclear Science and Technology, 1998, Vol. 35, No. 2, pp. 158-162.
CrossRef
Doeffer, P., Szumowski, A. and Yu, S, “The effect of Air Humidity on Shock Wave Induced Incipient Separation”, Journal of Thermal Science, 2000, Vol. 9, No.1, pp. 45-50
CrossRef
Setoguchi, T. and Matsuo, S., “Effect of Non-Equilibrium Homogenous Condensation on Flow Fields in a Supersonic Nozzle”, Journal of Thermal Science, 1996, Vol. 6, No.2, pp. 90-96
CrossRef
Dolling, D.S. and Narlo II, N.C., “Driving Mechanism of Unsteady Separation Shock Motion in Hypersonic Interactive Flow”, AGARD-CP-428, Aerodynamics of Hypersonic Lifting Vehicles, pp. 7-1 to 7-12, 1987.
Muck, K.C., Andreopoulos, J. and Dussauge, J.P.: Unsteady nature of shock-wave/turbulent boundary-layer interaction. AIAA Journal, 26 (2), 179-187 (1988)
CrossRef
Kwan, W and Stark, R., “Flow Separation Phenomena in Subscale Rocket Nozzles”, AIAA- 2002-4229
Östlund, J. “Flow Processes in Rocket Engine Nozzles with Focus on Flow Separation and Side- Loads”, TRITA-MEK, Technical Report 2002:09, ISSN 0348-467X.
Reshotko, E. and Tucker, M., “Effect of Discontinuity on Turbulent Boundary-Layer Thickness Parameters and Application to Shock-Induced Separation”, NACA TN-3454, May 1955.
< >

Issue Details

International Journal of Aerospace Innovations


International Journal of Aerospace Innovations

Print ISSN: 1757-2258

Related Content Search

Find related content

Subscription Options

Individual Offers